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Abstract-We have designed and experimentally demonstrated a 
left-handed metamaterial working at microwave frequencies. An 
inexpensive mechanical-machining technique was used to 
fabricate a so-called fishnet metamaterial out of metal-dielectric-
metal structure. Our proposed metamaterial exhibits a negative 
refractive index with the W-band of around 85 GHz in both 
simulation and experiment. The originality brought by our 
investigated structure is its simplicity in manufacturing and its 
functioning with a double polarization (TE and TM modes). 
These make it suitable in many hopeful millimeter applications 
such as super-resolution-imaging, magnetic resonance imaging, 
bio-sensing and so on. Furthermore, the use of a flexible and thin 
dielectric substrate makes our structure very promising for 
conformal geometric applications (e.g., radar absorbers aboard 
military aircrafts).  
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I.  INTRODUCTION  
In recent years, a new kind of materials commonly called 

metamaterials has revolutionized the world of physics with 
unusual properties that do not exist in nature. Indeed, 
metamaterials offer possibilities to manipulate electromagnetic 
waves in an extraordinary way. Since the pioneering work of 
Victor Veselago on the general properties of wave propagation 
within negative refractive index media in 1968, a large number 
of researchers have contributed to the development and the 
growth of this new generation of materials. In this paper, we 
propose to investigate a well-established fishnet metamaterial 
(metal-dielectric-metal), which is designed to exhibit a 
negative refractive index at microwave regime. 

Fishnet metamaterials were initially introduced as 
structures with negative refractive index and low losses at 
near-infrared frequencies [2]. They subsequently demonstrated 
in microwave and terahertz frequencies [3-4], and are in the 
far-infrared frequency range [5-6] and in the visible range [7]. 
The fishnet structure also aims to be an alternative to the 
conventional structure consisting of a combination of SRR 
(Split Ring Resonators) and continuous wires, initially 
proposed by J. B. Pendry et al [8-9], fabricated and then 
characterized by R. A. Shelby et al at microwave frequencies 
[10].  

Although the SRRs ⁄ continuous-wires based metamaterial 
exhibits a negative refractive index, the multilayer topology of 
the structure, which is illuminated at grazing incidence, 
remains a major disadvantage of this class of metamaterials. 
So it is very difficult or even virtually impossible to fabricate 
unit cells of complex geometry with submicron or nanoscale 
sizes. Further drawbacks related to physical phenomena also 
limit the functioning of this structure at very high frequencies. 
The advantage of the fishnet metamaterial is its simplicity of 
manufacture. Furthermore, only one single layer excited at 

normal incidence is sufficient to exhibit a negative refractive 
index at the desired frequency. In the following sections, we 
will study a perforated metal-dielectric-metal structure that 
exhibit a negative refractive index around 85 GHz. 

II. HOLES-ARRAY METAMATERIAL: DESIGN SPECIFICATIONS 
Our investigated metamaterial is shown in Fig. 1(a) fig1a. 

It consists of dielectric substrate coated on both sides with 35 
µm thick copper. Holes with a diameter of 1.9 mm are 
achieved mechanically using a CNC-controlled milling 
machine entirely through the substrate with a periodicity of a 
= 2.5 mm along x and y directions.  The proposed 
metamaterial is very simple to manufacture without using 
traditional lithography techniques, which is a major advantage 
for a transfer to industrial applications The commercial 
Isoclad-Arlon printed circuit board, which has a thickness t of 
100 µm, a moderate relative permittivity εr of about 3.16 and a 
low loss tangent of about 0.9 % (tan δ  ∼ 0.009 up to 100 GHz) 
is used for the design. 

 
Fig. 1 Photograph of our fabricated  prototype with the relevant geometrical 

dimensions: a = 2.5mm, ∅ = 1.9mm, the polarization of the electric and 
magnetic fileds is also illustrated in the figure 

70 80 90 100 110
-40

-30

-20

-10

0

 

 

M
ag

ni
tu

de
 (d

B)

Frequency (GHz)

   S21-sim

 S21-exp

  S11-sim

 S11-exp
(a)

70 80 90 100 110
-200
-150
-100
-50

0
50

100
150
200

 

 

   S
21

- sim
 S

21
- exp

   S
11

- sim
 S

11
- exp

Ph
as

e 
(d

eg
)

Frequency (GHz)

(b)

 
Fig. 2 Magnitudes (a) and phases (b) of the simulated (solid line) and 
measured (line and symbols) response (transmission and reflexion) to 

electromagnetic radiation incident on the holes-array fishnet metmaterial 
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The chosen PCB presents a good mechanical flexibility 
due to its low thickness, which is a potential good feature for 
conformity applications like radomes. This metamaterial is 
excited at normal incidence with electric and magnetic field 
polarization illustrated in Fig. 2. Note that only one single 
layer of the metamaterial is taken into account along the 
direction of propagation kz.  

III. SIMULATIONS AND EXPERIMENTAL VERIFICATIONS  
Using HFSS, which is full wave commercial software 

simulator based on the finite element method, we calculated 
the magnitudes and phases of the transmission S21 and 
reflexion S11coefficients. Experiments have been done by 
using a non-destructive free-space setup based on a vector 
network analyser (AB MillimetreTM) with transmitting and 
receiving horn antennas. The results of our characterization 
are depicted in Fig. 2. The structure has a pronounced 
resonance around 85 GHz, we find that the electromagnetic 
resonance wavelength λ is much larger than the size of the 
unit cell t (thickness of the metamaterial along the direction of 
propagation z) (λ⁄t=35), the effective medium model could be 
successfully employed. Although the sizes of the unit cells of 
the metamaterial along the x and y directions are not much 
smaller than λ, diffraction still cannot occur. The reason is that 
electromagnetic waves are not propagating along the x and y 
directions [11]. The structure exhibits a good impedance 
matching (z′ = 1) at about 107 GHz for the simulation and near 
104 GHz for the measurement (see Fig. 2(a)). At these 
frequencies the reflexion undergoes a phase jump of +180°. 
The dip in the phase of transmission around 85 GHz indicates 
the presence of a negative refractive index band (see Fig 2(b)). 

IV. EXTRACTION OF EFFECTIVE PARAMETERS  
Using the S-parameters retrieval method [12], the complex 

effective permeabilityµ, permittivityε, wave impedance z and 
refractive index n have been extracted in Fig 3. The 
permeability shows a resonant Lorentz dispersion (Fig. 3(a)), 
while the permittivity is analogous to the Drude dispersion 
model of the continuous wires (Fig. 3(b)). The negative 
permeability is the result of a strong resonance response to an 
external magnetic field while negative permittivity can be 
achieved by either plasmonic or a resonance response to an 
external electric field. Around the frequency of resonance, the 
real part of the effective wave impedance z′ is real positive 
with very low imaginary parts, which attests the passivity of 
the structure (see Fig. 3(c)). According to what we have 
mentioned in the previous section, the real part of the effective 
wave impedance z′ = 1 near 107 GHz in the simulation and at 
about 104 GHz in the measurement, which confirms a good 
impedance matching between the structure and its host 
medium. Our extracted effective refractive index is negative 
over a frequency band from 80 GHz to 90 GHz, which 
includes both Single Negative Metamaterial (SNG:µ′>0 and 
ε<0) from 80 GHz to 85 GHz and Double Negative 
Metamaterial (DNG: µ′<0 and ε<0). The negative refractive 
index is achieved when the condition P= µ′ε″+µ″ε′< 0 is 
satisfied, as clearly shown in Fig 3(d) and Fig. 3(e), 
respectively. Several prototypes have been fabricated for 
different operating frequencies: 35 GHz, 55 GHz, 85 GHz and 
94 GHz, which offers a very broad spectral range of 
functioning, depending on the targeted application. At about 
86.3 GHz, the double negative metamaterial (DNM) has a 
maximum FOM of 3.5 in simulation and about 1.4 in 

measurement, contrasted to the significantly lower FOM 
values of the single metamaterial (SNM) as shown in Fig 3(e). 
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Fig. 3 Extracted electromagnetic properties of a periodic array of our double-

sided metal grid fishnet metamaterial unit cell, using the simulated and 
measured data of Fig. 2. Real and imaginary parts of:permittivity (a), 

permeability (b), impedance (c) and refractive index (d). Simulated (solid 
lines) and measured (lines+symbols) curves of real part of the refractive index 
n′, P=µ′ε″+µ″ε′ and FOM=(-n′/n″) (e). To guide the eye, the spectral regions 

corresponding to the (DNG) and (SNG) are highlighted by different shadowed 
areas 

V. STABILITY OF THE SPECTRAL RESPONSE FOR DIFFERENT 
FIELD POLARIZATION ANGLES AND DISPERSION DIAGRAM   

The influence of the incident angle θ inc on the stability of 
the response of our investigated holes-array fishnet 
metamaterial has been studied numerically. The spectral 
response of our metamaterial is very sensitive to the incident 
angle θ inc, as illustrated in Fig. 4(a). Indeed, at ±10°, an 
additional peak appears around 105 GHz and splits into new 
peaks, which move gradually toward lower frequencies as the 
angle of incidence increases.  
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Fig. 4(a) Transmission magnitudes of the investigated holes-array 
metamaterial for different incident angles (θ inc) from 0° to ±50°, (b) simulated 
(solid lines) and measured (dashed lines) first-mod dispersion diagram on the 
contour ΓΧ of the first Brillouin zone of the holes-array fishnet metamaterial 

The resonance at 85 GHz that characterizes the negative 
refractive zone is not modified up to an incident angle of ±20°. 
Beyond this angle of incidence, the negative refractive index 
signature is significantly affected and it completely disappears 
for an incident angle of about ±50°. In other words, it seems 
that the structure supports higher order modes that might be 
very useful for multiple-frequency band applications.  

The theoretical and experimental first mode dispersion 
diagram on the ΓΧ contour of the first Brillouin zone of our 
studied metamaterial is depicted in Fig 4(b). The structure 
exhibits a left-handed propagation, characterized by a negative 
slope (dω ⁄ dk < 0) within the frequency range 85 GHz - 90 
GHz (highlighted regions in Fig. 4(b)) which demonstrates 
that the phase velocity and group velocity are anti-parallel. 

The structure also exhibits a band gap between 90 GHz 
and 105 GHz approximately in simulation (right horizontal 
dashed regions in Fig. 4(b)) and between 90 GHz and 98 GHz 
approximately in measurement (left vertical dashed region in 
Fig. 4(b)). Beyond the experimental and theoretical 
frequencies of 98 GHz and 105 GHz respectively, which 
correspond to the plasma frequencies of the structure, the 
metamaterial behaves as a right-handed propagation medium 
of electromagnetic waves. 

VI. DEMONSTRATION OF THE NEGATIVE REFRACTION  
In order to demonstrate the existence of a frequency band 

where the refractive index is negative, and to prove a direct 
consequence of the negative refraction of the electromagnetic 
wave for the holes-array fishnet metamaterial, a two 
dimensional metamaterial prism is designed for simulation and 
measurement. Both simulations and experiments have been 
performed on the prism characterized by a refractive index 
that reaches a maximum negative value of about -4 around 85 
GHz.  

 

Fig. 5 Stacked-metamaterial-prism-based negative refraction simulation at 85 
ghz, n1  is the refractive index in the air, neff  is the effective refractive index in 

the prism 

We have depicted in Fig. 5 the calculated electric field 
distribution at the resonant frequency of 85 GHz. The 
simulation results demonstrate the negative refractive 
behaviour. Indeed, the refracted beam, which corresponds to 
the Ez-field, propagates toward a left-handed region with a 
negative refraction angle of about -15° (in other words, the 
beam is transmitted in the same side as the incident beam, with 
respect to the normal axis∆). One can clearly observe that the 
magnitude of the Electric field is considerably enhanced 
within the metamaterial-based stacked prism, which 
demonstrates the amplification of evanescent modes.  

VII. CONCLUSION  
In conclusion, we have investigated composite metal-

dielectric metamaterial at microwave frequencies exhibiting a 
negative refractive index. Calculations based on the finite 
element method have been performed in order to predict the 
spectral response of our proposed structures. An experimental 
demonstrator has been fabricated using the mechanical 
machining approach. Measurements have been carried out 
using a non-destructive free space setup based on a vector 
network analyzer and horn antennas so as to validate the 
numerical predictions. Good agreements have been reported 
between simulations and experiments. The negative refractive 
index exhibited by our structure (fishnet metamaterial) has 
been calculated and measured. And the left handed behaviour 
has been demonstrated numerically and experimentally.  
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